Autonomous HVAC Control, A Reinforcement Learning Approach

نویسندگان

  • Enda Barrett
  • Stephen Linder
چکیده

Recent high profile developments of autonomous learning thermostats by companies such as Nest Labs and Honeywell have brought to the fore the possibility of ever greater numbers of intelligent devices permeating our homes and working environments into the future. However, the specific learning approaches and methodologies utilised by these devices have never been made public. In fact little information is known as to the specifics of how these devices operate and learn about their environments or the users who use them. This paper proposes a suitable learning architecture for such an intelligent thermostat in the hope that it will benefit further investigation by the research community. Our architecture comprises a number of different learning methods each of which contributes to create a complete autonomous thermostat capable of controlling a HVAC system. A novel state action space formalism is proposed to enable a Reinforcement Learning agent to successfully control the HVAC system by optimising both occupant comfort and energy costs. Our results show that the learning thermostat can achieve cost savings of 10% over a programmable thermostat, whilst maintaining high occupant comfort standards.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of functional link neural network to HVAC thermal dynamic system identification

Recent efforts to incorporate aspects of artificial intelligence into the design and operation of automatic control systems have focused attention on techniques such as fuzzy logic, artificial neural networks, and expert systems. The use of computers for direct digital control highlights the recent trend toward more effective and efficient heating, ventilating, and airconditioning (HVAC) contro...

متن کامل

Preventive Maintenance of Centralized HVAC Systems: Use of Acoustic Sensors, Feature Extraction, and Unsupervised Learning

In this paper, we propose a predictive maintenance scheme for centralized HVAC systems by autonomous monitoring and analyzing their acoustic emissions. Our proposed solution allows a building to be retrofitted to monitor its HVAC without having to modify the existing infrastructure. Our approach is to employ an energy-efficient, low-cost, and distributed acoustic sensing platform to capture and...

متن کامل

A Constructive Spiking Neural Network for Reinforcement Learning in Autonomous Control

This paper presents a method that draws upon reinforcement learning to perform autonomous learning through the automatic construction of a spiking artificial neural network. Constructive neural networks have been applied previously to state and action-value function approximation but have encountered problems of excessive growth of the network, difficulty generalising across a range of problems...

متن کامل

Reinforcement Learning of Hierarchical Fuzzy Behaviors for Autonomous Agents

Reinforcement learning is a suitable approach to learn behaviors for Autonomous Agents, but it is usually too slow to be applied in real time on embodied agents [8]. In this paper, we present the results that we have obtained by adopting a careful design of the control architecture and of the learning sessions, aimed at reducing the learning computation. The agent learns in simplified environme...

متن کامل

Distributed Control of Heating, Ventilation and Air Conditioning Systems in Smart Buildings

In this paper, the problem of distributed control of the heating, ventilation and air conditioning (HVAC) system in an energy-smart building is addressed. Using tools from game theory the interaction among several autonomous HVAC units is studied and simple learning dynamics based on trial-and-error learning are proposed to achieve equilibrium. In particular, it is shown that this algorithm rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015